The essential dimension of congruence covers

نویسندگان

چکیده

Consider the algebraic function $\Phi_{g,n}$ that assigns to a general $g$-dimensional abelian variety an $n$-torsion point. A question first posed by Kronecker and Klein asks: What is minimal $d$ such that, after rational change of variables, can be written as variables? Using techniques from deformation theory $p$-divisible groups finite flat group schemes, we answer this computing essential dimension $p$-dimension congruence covers moduli space principally polarized varieties. We apply result compute genus $g$ curves, well its hyperelliptic locus, certain locally symmetric

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Essential positive covers of the cube

Linial and Radhakrishnan introduced the following problem. A pair (a, c) with a ∈ R and c ∈ R defines the hyperplane {x : ∑ i aixi = c} ⊂ R. Say that a collection of hyperplanes (a, c), . . . , (a, c) is an essential cover of the cube {0, 1} if it is a cover, with no redundant hyperplanes, and every co-ordinate used: i.e., every point in {0, 1} is contained in some hyperplane; for every j ∈ [m]...

متن کامل

Eigenvalues of Congruence Covers of Geometrically Finite Hyperbolic Manifolds

Let G = SO(n, 1)◦ for n ≥ 2 and Γ a geometrically finite Zariski dense subgroup of G which is contained in an arithmetic subgroup of G. Denoting by Γ(q) the principal congruence subgroup of Γ of level q, and fixing a positive number λ0 strictly smaller than (n − 1)/4, we show that, as q → ∞ along primes, the number of Laplacian eigenvalues of the congruence cover Γ(q)\H smaller than λ0 is at mo...

متن کامل

Essential dimension

Informally speaking, the essential dimension of an algebraic object is the minimal number of independent parameters one needs to define it. This notion was initially introduced in the context where the objects in question are finite field extensions [BuR97]. Essential dimension has since been investigated in several broader contexts, by a range of techniques, and has been found to have interest...

متن کامل

Combinatorial Computation of Moduli Dimension of Nielsen Classes of Covers

Consider a rational function field C(x) in one variable. There have been quite a number of attempts to use Riemann’s existence theorem to organize both the lattice of subfields and the algebraic extensions of it. This exposition describes a further attempt that includes exposition on ground (§2) covered sporadically by Zariski [Z]. A rough phrasing of the particular problem: For each nonnegativ...

متن کامل

the aesthetic dimension of howard barkers art: a frankfurtian approach to scenes from an execution and no end of blame

رابطه ی میانِ هنر و شرایطِ اجتماعیِ زایش آن همواره در طولِ تاریخ دغدغه ی ذهنی و دل مشغولیِ اساسیِ منتقدان و نیز هنرمندان بوده است. از آنجا که هنر در قفس آهنیِ زندگیِ اجتماعی محبوس است، گسترش وابستگیِ آن با نهاد ها و اصولِ اجتماعی پیرامون، صرفِ نظر از هم سو بودن و یا غیرِ هم سو بودنِ آن نهاد ها، امری اجتناب ناپذیر به نظر می رسد. با این وجود پدیدار گشتنِ چنین مباحثِ حائز اهمییتی در میان منتقدین، با ظهورِ مکتب ما...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Compositio Mathematica

سال: 2021

ISSN: ['0010-437X', '1570-5846']

DOI: https://doi.org/10.1112/s0010437x21007594